
OpenTelemetry & Friends

Who am I?

Name: Gerard Gigliotti

I’m a full stack engineer at Ippon
Australia.

What is Telemetry?

TRACES METRICS LOGS

A metric is a measurement
about a service, captured as the
service is running.

Example
Microservice B records the
number of requests made to its
endpoint, using a counter.

A trace is a request
documented through one or
more components, linked
together within a common ID.

Example
Microservice A talks to
Microservice B over a REST
endpoint; Microservice A
provides trace_id data within a
header in the call.

A log is a timestamped text
record, either structured
(recommended) or
unstructured, with metadata.

Example
Microservice B records details
of incoming requests

What is OpenTelemetry?

Collector

Protocol

Language
Specific

APIs+SDKS

Who are its friends?

Integration Extraveganza

Sample “Hello World” Stack

BFF - Service A
(NodeJS)

Frontend
(Browser)

Backend -
Service B - W

(Java)

Backend -
Service B - O

(Java)

Backend -
Service B - R

(Java)

Backend -
Service B - L

(Java)

Java Agent (for the Lazy Practical)

Injectable Bytecode Agent, which you supply as an argument at startup.

Java API - Spans With Annotations

What’s a Span?

Span

Span

Span

Span Span Span

Trace

Java API - Metrics

NodeJS - Trace & Console Exporting

NodeJS - Exporting via GRPC

NodeJS - Spans

NodeJS - Metrics

JavaScript Frontend - Caveats Caveats Caveats

- There is support for running OpenTelemetry via the Frontend.

- However, you need to allow the frontend access to a collector, and they

recommend you run it behind a proxy for additional protection.

- Only Otel-over-HTTP is supported, no GRPC.

Frontend

Frontend

Propagation

How do the traces connect together? Generally via headers (in the case of HTTP).

Supports:

- W3C TraceContext (recommended)

- W3C Baggage (recommended)

- B3

- Jaeger

- OT Trace

Emotional Baggage

Span

Span

Span

Span Span Span

ClientId

ClientId

Collector

Collector

● Small, standalone Go-Application.

● Generally used as a container side-car in Kubernetes/ECS.

● Configured via YAML

Receivers Processors Exporters

OLTP - GRPC

OLTP - HTTP

Prometheus
Scraping

Sampler

Batching OLTP - GRPC

Logging

File

Extensions

Collector

Collector Distributions

- The Standard/Pure OpenTelemetry Distribution

- Vendor Specific Distributions

Simple Collector Config

AWS XRay Collector

Docker Sidecar

Provider Examples

AWS XRay my Heart

AWS XRay Issues

- ID Generation.

- Propagation

AWS XRay

AWS Ray

CloudWatch Metrics

Honeycomb.io

Honeycomb.io Metrics

Lessons Learnt

Implementation Lessons

- Spec (for tracing+metrics) is stable. SDK is still all over the place, but getting

better.

- Java specific, a strategy for managing your Java-agent.

- Add in Otel As Soon as Possible, but only if you don’t have another provider

integrated.

Operational Lessons

- Health Checks endpoints on apps are bothersome for low volume apps.

- Understand what you’re sending your provider.

Questions?

Thank You

Feedback? Questions? Drop me an

email at ggigliotti@ippon.tech , or

come and see me a the Ippon Booth.

